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Abstract 

The continuity properties of the second partials of the optimal performance 
function S(r,y) play a crucial role in making the transition from the recursive 
formulation of the principle of optimality of dynamic programming to the 
Hamilton-Jacobi equation and to the Euler and Weierstrass necessary conditions 
of the calculus of variations. At a singularity point of an extremal, S, has a &st- 
order pole. The asymptotic properties of S ,  near a pole are discussed and used 
to demonstrate the necessity of the boundedness of S ,  on the interior of a mini- 
mizing extremal. A one-to-one relationship is demonstrated between a pole of 
S,, on the interior of an extremal and the conjugate point as classically defined in 
the calculus of variations. The geometric properties of envelopes and the envelope 
theorem are reviewed. Finally, it is shown that when the end point of an extremal 
is sufficiently close to an envelope, such an extremal is not a globally minimizing 
curve. 
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The Conjugate Point and Dynamic Programming 

I. Introduction 

It has been shown by Dreyfus (Ref. 1) that the prin- 
ciple of optimality of dynamic programming leads to the 
various minimizing necessary conditions of the calculus 
of variations, with the exception of the Jacobi condition 
concerning conjugate points on extremals. The conjugate- 
point phenomenon in the dynamic-programming ap- 
proach is reflected in the second partial derivatives of 
the optimal performance function S(x,y) becoming un- 
bounded at a point. Dreyfus has observed that although 
the Jacobi condition that there be no conjugate points 
on an extremal between the end points is a demonstrat- 
able necessary condition when using the calculus of vari- 
a t i~ns ,  it has not yet heen +y.~r? !hit with the sole iise 
of a dynamic-programming approach the existence of a 
point of singularity of the second partials of S(x,y) on the 
interior of an extremal necessarily implies a nonminimiz- 
ing character for such an extremal. 

It is the purpose of this Report to indicate the necessity 
of this dynamic-programming condition and to describe 
related properties of the conjugate-point phenomenon. 
For the sake of completeness, this Report contains con- 
siderable material of a tutorial nature. Only the simplest 

problem of the calculus of variations will be considered. 
Hence, the problem is the minimization of a functional 
in the form 

with fixed end points. It will be assumed that f has at least 
piece-wise continuous third partial derivatives and that 
the resulting extremals for this problem are regular (i.e., 
f,,y, # 0 for all x). 

11 I I .  n-----:- Y y I I u I I I I b  D-cl--c.--;nn I I"~l".III .... .J nnrl _..- +km ...- N e r P c c m w  .--------, 
Conditions of the Calculus of Variations' 

A brief and heuristic exposition of the dynamic- 
programming approach to the calculus of variations is 
provided in this Section. We define S(xl,yl) to be the 
minimum value of expression (l), where we consider the 
final point (xy,y?) - to be fixed and we let (nl,yl) be free to 

'See Ref. 1, Chap. 3, for a more detailed treatment of the material 
in this Section. 
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change. With this approach we have imbedded our origi- 
nal problem of finding the minimizing path from (xl,yl) 
to (x2,y2) in the more general family of problems of finding 
the minimizing curve from an arbitrary point (x,y) to the 
fixed final point (x2,y2) (Sketch 1). We hypothesize the 
existence of a minimizing path from (x,y) to (x2,yz) and 
we seek to characterize the minimizing properties of such 
a path. For each point (x,y) there is a unique value S 
associated with this point and it is well known that S(x,y) 
satisfies the Hamilton Jacobi equation. The principle of 
optimaiity implies the following relation for all points 
from which a minimizing curve to (x2,yz) exists: 

the right-hand side of Eq. (2) in a Taylor series about 
(x,y). Although there are some fine points in this pro- 
cedure, it has nevertheless been put on a rigorous basis 
by Berkovitz and Dreyfus (Ref. 2). We treat the curve C 
as a straight line connecting the two infinitesimally close 
points (x, y) and (x + Ax, y + Ay). Hence, the minimiza- 
tion in Eq. (2) with respect to y(x) now becomes a prob- 
lem of finding the optimal slope at (x, y). That is, Eq. (2) 
may be approximated by 

where h has been written for AX. Assuming that the sec- 
ond partial derivatives of S(x, y) exist, we may expand 
through the first order to obtain 

where the minimization is with respect to the y(x) over 
the interval (x, x + Ax) (Sketch 2). By discretizing this 
expression, we are lead directly to the fundamental re- 
cursive relation which is the keystone of the dynamic- 
programming computational philosophy. 

0 = min [hf(x, y, y’) + hS, + hS,,y’ + O(h2)] 

(4) 
( V ’ )  

and dividing by h and letting h-0, we obtain 

min [ f ( x ,  y, y’) + S, + S,y’] 0 
(U‘) 

(5 )  

Y 

I L ”  
-1 

Sketch 1 

i 

1 e x  

Sketch 2 

Since we here are interested in the relationship to the 
calciiliis of variations, we let AX become small and expand 

2 

The minimizing value of y’ is seen from Eq. (5) to be 
dependent on (x,y) and S,. But S, is implicitly a function 
of (x,y), and so we define the slope function p(x,y) to be 
the minimizing valueof y’. Because there are no constraints 
on y’ in our problem, we may differentiate Eq. (5) to 
obtain a necessary condition for a minimum of Eq. (5) 
with respect to 9’. Hence we obtain two results: 

Eliminating p from Eq. (Sa) and (6b) yields the Hamilton- 
Jacobi equation for S(x,y). If we assume that there is a 
unique minimizing extrema1 from (x,y) to (x2,y2), then 
except at corners of such extremals, p(x,y) will be a single- 
valued function indicating the slope of the extrema1 
passing through the point (x,y). 

From Eq. (6), which is the fundamental result, it is a 
simple matter to derive the Euler equation, and the 
Legendre and Weierstrass necessary conditions of the 
calculus of variations. The Euler equation, which may be 
thought of as a first-order partial differential equation in 
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p(x,y) describing its behavior along an extremal, is ob- 
tained as follows: One differentiates Eq. (Sa) with respect 
to y to obtain 

f ,  + f , , P ,  + sz, + S,,P + S,P, = 0 (7) 

and using Eq. (6b) we have 

f,+ sa/+ S,,P = 0 (8) 

Since we have assumed that the second partials of S exist, 
we may interchange the differentiation order of S in 
Eq. (8). We denote the total derivative of a quantity taken 

I along an extremal by (d/dx), and thus we have 

Then from Eq. (6b), (S), and (9) we have the result 

which is the Euler equation defining the change in p(x,y) 
along a particular extremal. 

The Legendre condition follows from noting that p(x,y) 
minimizes Eq. (sa) and hence the second partial of Eq. (6a) 
with respect to p must be nonnegative. It follows that 
f,,,,(x,y,p) 2 0. The Weierstrass condition is deduced from 
the fact that zero is a minimum value for f(x,y,y') + S, + S,y' 
which is attained for y' = p. Then, by replacing S, with 
-f,, in Eq. (sa), we have the inequality 

which is the Weierstrass condition. 

111. The Conjugate Point 

The derivation of Eq. (sa) and (6b) required two as- 
sumptions; namely, that the second partials of S(x,y) were 
bounded at (x,y) and that a minimizing extremal from (x,y) 
to (x2,y2) existed. Suppose now that as one travels back- 
ward along an extremal from (xz,y2) one reaches finally 
a point (xo,yo) where the second partials of S become 
infinite. It is not guaranteed that as one approaches (xo,yo) 
from (x2,y2) along an extremal &,, &, will remain a globally 
minimizing extremal. Therefore, we must be somewhat 
careful in phrasing the minimization operation in Eq. (3) 

for (x,y) near a conjugate point. We will relax our defini- 
tion of S(x,y) to be simply the value of the integral along 
an extremal that is assumed to be globally minimizing for 
(x,c,y) near (x2,yz) and is at least relatively minimizing 
for (x,y) near a conjugate point. 

Let us consider here the asymptotic behavior along &, 
of the partial derivatives S,, S, ,  and S,, near (xo,yo); these 
will be used in later considerations. On e,, for x>xo, the 
expressions in Eq. (6a) and (6b) are valid and we can 
differentiate them because of the continuity properties 
assumed for f(x,y,y'). Hence we obtain from various 
differentiations 

Since f and its derivatives are bounded, we see that near 
(xo,yo) the ratios S,/S,, and S,,/Su, are defined and, in fact, 

From Eq. (13) it follows that we need only study the 
asymptotic behavior of SVv For since p(x,,yo) is bounded 
in the simplest problem, if any of the second partials of 
S(x,y) become unbounded, S,, will be included. We need 
an expression describing the behavior of S,, along &,. 
We note from Eq. (6b) and our continuity assumptions 
for f(x,y,p) that S, has at least piece-wise continuous sec- 
ond derivatives at all points on &, for which the derivation 
of Eq. (6b) is valid. From this it follows that [d(S,,)/dx], 
exists on &, at all such points, which enables us to obtain 
9 Erst-nrder differential equation describing the behavior 
of S,, along &,. Differentiating the first expression in 
Eq. (12) with respect to y, we obtain 

Along €, we also have 
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and it follows that 

Using the third expression in Eq. (12) to eliminate p,, 
we obtain finally 

Hence, S,, satisfies a Ricatti equation along &o. 

At (xo, yo) on €,,, S,, becomes unbounded. Equation 
(17) indicates that near (x,,yo) 

From expression (18) it follows that the asymptotic be- 
havior of S,, on €, near (xo,y,,) is given by 

That is, S,, has a first-order pole at xO. Equation (19) will 
be used later to demonstrate the necessity of the bounded- 
ness of the second partials of S(x,y) along &,,. 

Let us next show that a singularity point of S,, does 
in fact correspond to the conjugate point as usually defined 
in the calculus of variations. From Eq. (12) it follows that 
at a singularity point of S,,, p,(x,y) also becomes un- 
bounded and that the ratio S,,/p, is defined and given by 

We recall that p is the value of the slope of the extremal 
through (x,y). Let us say that the extremal through (x,y) 
to (x2,y2) is described by the function 

where a is the parameter that generates a one-parameter 
family of extremals passing through (x2,y2) and for the 
particular value a, generates the extremal €,,. It may be 

shown from Eq. (10) that except at comers, 4 has contin- 
uous second partial derivatives in x and a. If we assume 
that +a # O ,  then Eq. (21) defines a unique u for each ( x , ~ )  
and we may write a=a(x,y). It then follows that the slope 
function p(x,y) is defined by the relation 

Now +(x,a) satisfies the Euler equation in Eq. (10). Let US 

substitute +(x,a) into Eq. (10) and differentiate with 
respect to a and interchange differentiations, which is 
permissible since the appropriate partial derivatives exist. 
We obtain 

which is recognized as the Jacobi equation. In a sense, 
this equation provides the link between a dynamic- 
programming formulation of conjugate-point phenomena 
and a calculus-of-variations formulation where the zero 
crossings of +(1 are the object of study. A zero crossing of 
a nontrivial solution of the Jacobi equation in Eq. (24) 
satisfying the boundary condition &(xz,cz,,) = 0 is defined 
as a conjugate point, or more precisely a point conjugate 
to the terminal point (xZ,y2). From Eq. (23) and (24) it 
follows that p,(x,y) becomes unbounded when and only 
when +fl(x,u,,), a nontrivial solution of Eq. (a), is zero. 
Hence, it follows from Eq. (20) that S,, is always un- 
bounded at a conjugate point and further, except possibly 
at the point (x2,yz), S,, is bounded at all nonconjugate 
points of 6,). Hence, the necessity of the boundedness of 
S, for x, < x < x, in order that 6,) be a minimizing extremal 
can be demonstrated from the Jacobi necessary condition 
in the calculus of variations. 

IV. A Dynamic-Programming Proof of the 
Jacobi Necessary Condition 

To demonstrate the necessity of the Jacobi condition 
for a conjugate point (x,),y,,) lying on the interior of e(, 
(i.e., x1 < x,, < x,), we compare the value S(x,y) associated 
with &o with the value V obtained from following a path 
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neighboring 8, from (x,y) to (x2,y2). We wish to show that 
the difference V - S(x,y) can be made negative for some 
neighboring path when (xo,yo) is an interior point of 60. 
Such a neighboring path is indicated in Sketch 3, where 
an arbitrary curve C is followed from (x,y) to (gc) and an 
extremizing curve e, is then followed from (%$) to (x2,y2). 
Hence, V is given by 

The value S(x,y) can be written as 

where we must be careful to define S(x,,yo) to be the 
limiting value of S(x,y) as (x,y) approaches (xo,yo) along e, 
from the (x2,y2) side. By expanding the right-hand mem- 
bers of Eq. (2.5) and (26) in Taylor series about the point 
[ 2, + (?,%)I on eo, one can show, using the asymptotic 
properties of S, at (xo,yo), that the difference V - S(x,y) 
can be made negative, This approach is cumbersome and 
requires care in expanding the S functions. 

Y 

t 

Sketch 3 

An alternate approach, which we follow here, is to show 
that the second variation of the functional in expression (1) 
can be made negative. Since €, is an extremal, the first 
variation about e, is zero; if we can make the second vari- 
ation negative, this implies that a neighboring curve 
arbitrarily close to 8, in both ordinate and slope can be 

found for which V - S(x,y) is negative. Hence, we can 
write 

V - S(x,y) = S2Z + higher order terms (27) 

where S21 is the second variation of the functional in 
expression (1) and is given by 

Here, v is the difference in ordinate between the neigh- 
boring curve and e,, and v' is the difference in slopes. 
From Sketch 3 we observe that 7 and 7' are zero over the 
interval [x,, x].The functions fvv,  f v v ,  and f v r v .  are evalua- 
ated on Eo. By making both 7 and v' arbitrarily small, we 
can make the second variation term in Eq. (27) dominate 
the right-hand side and thus control the sign of V - S(x,y). 
The second variation in Eq. (28) is composed of two parts; 
namely, a contribution from traveling along C from (x,y) 
to @,?) and a contribution from 6, between @,?) and 
(x2,y2). The extremal el is described by the function 
9 ( x , ~ , ) .  Let us define J to be the component of S2Z that 
results from following 6, between (T,?) and (x2y2). Then 
J can be written 

where is p - +(? a,) and ~ ( x )  is given by 

We shall next prove that 

where S, is evaluated on e,. The identity 

becomes, with the use of Eq. (12) and (16), 
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But from Eq. (23) and (30) it follows that 

p,(x, y) = + + O [ ( &  - a0)l (33) 

and hence Eq. (32) becomes 

Integrating Eq. (34) and using Eq. (29) and the fact that 
7(x2) = 0, we obtain the result in Eq. (31). 

Let us now find a path neighboring &o from (x,y) to 
( x z ,  y2) for which the second variation is negative. Such a 
path in yx-space is indicated in Sketch 4. We set x = xo - e2 

n 

Sketch 4 

and 7 = x, + E ,  with E , ,  > 0, but arbitrarily small. We 
choose the path C in Sketch 4 so that ~ ( x )  is a straight 
line connecting (xo - c2, 0) and (xo + el,?). We follow &I 

from xo + el to x p .  The second variation for this path is 

Expanding the integral in Eq. (35) about x, and noting that 

xo - €2 5 x < r, + €1 

we have the result 

Using the asymptotic property of S,, near xo as given by Eq. (19), we have the result 

If we retain only the dominant terms, P Z  becomes 

It is clear that by making 7, el, e2 sufficiently small, the sign of 8?1 will be negative since f,,,, > 0. This demonstrates 
the necessity of the boundedness of S,, over the open interval (xI, x2). When xo and x1 coincide, which corresponds 
to a conjugate point at the end point, the preceding proof does not apply because E? must become zero in this case. 
For this special case one must consider the geometric nature of the conjugate point-a subject that has received 
considerable historical attention in the calculus of variations. The remainder of this Report is concerned with topics 
related to this facet of the conjugate-point problem. 
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V. The Envelope Theorem 

Let us consider the propagation of the conjugate point 
on neighboring extremals. We have seen from the Jacobi 

I equation in Eq. (24) that the vanishing of +a(x,u), 
( x  # x,)  marks a conjugate point and that, in particular, 
+=(xO, %) = 0 defines a conjugate at (x,, yo) on e,. The 
extremals neighboring & are generated by the param- 
eter a. If we let F denote a vanishing point of +Q other 
than at x p ,  then F = ?s(a) with T = xo = ?(u,). From the 
theory of differential equations (see, for example, Ref. 3) 
and the implicit function theorem, it is known that if 
there exists a vanishing point (G, yo) of +a for a given a,, 
then for a range of values of a in some neighborhood of 
a,, say, a, < a, < a*, +a also vanishes for x = F(u). 
Furthermore, T(a) is a continuous function, since the 
coefficients of +:, +:, and +a in Eq. (24) are continuous 
near (x,,  yo) because of our assumption of a cornerless 
extremal at (x,,  yo). So we conclude that if (G, yo) is a 
conjugate point on &,, then there is some neighborhood 
of extremals about 6, that possesses conjugate points in 
some region including (x,,  yo). An investigation of the 
relationship y = +(x ,  a), +Q(x, a) = 0 defining x(a) and 
y(a) will reveal that the behavior of conjugate points on 
neighboring extremals follows two patterns as indicated 
in Sketches 5 and 6. Conjugate points represent either a 
confluence of extremals through the same point as in 
Sketch 5 or a locus of contact points of the neighboring 
extremals with an envelope G of the family as described 
by the curve Z = ?(a), ij = $a) in Sketches 6a and b. 
The special case of an envelope with a cusp where 
+,,,&, a)  = 0 is shown in Sketch 6b. 

Let us develop here the so-called envelope theorem of 
the calculus of variations (Ref. 4), which is applicable to 
all conjugate points where +aQ # 0 (i.e., except the con- 
fluence type shown in Sketch 5 and at a cusp point as in 
Sketch 6b). We wish to prove that 

i 

Sketch 5 

- I. 

Sketch 6 

/ ' j ( g ,  ij, a) tic + S ( X ,  ij) = constant (40) 
0 

(x2r Y2) 

i 
where the integration is taken along G, the envelope (see 
Sketch 7). Differentiating Eq. (40) with respect to x we 
have, if Eq. (40) is true, 

s, + s, y' + f(., g, q) = 0 (41) 

But at (X, ij) the slope of G and the contacting extremal 
are identical; thus y' = p .  Replacing y' with p ,  we ob- 
serve that Eq. (41) becomes identical with Eq. (sa). Sketch 7 

b X  
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Berkovitz and Dreyfus (Ref. 2) have shown that S ,  and 
S, are continuous along an extremal and their arguments 
apply as well to our relaxed definition for S .  These con- 
tinuity properties are equivalent to the well-known corner 
conditions of the calculus of variations. From this it 
follows that Eq. (Sa) holds at a conjugate point also, in 
spite of the unboundedness of the second partials of S ;  
for as we approach (xo, yo) from (x , ,  y,) along e,, we see 
that each term in Eq. (Sa) is continuous, so that the sum 
f + S, + Sup must remain at zero even at (xo, yo). Since 
this value of p is at least an extremizing value, it also 
follows that Eq. (6b) holds at ( x o ,  yo). 

Hence, Eq. (41) reduces to Eq. (6a) and the result in 
Eq. (40) is established. From Eq. (40) it now follows that 

The result in Eq. (42) can also be obtained through the 
caIculus of variations, using the HiIbert integral (Ref. 4). 

VI. The Necessity of the Jacobi Condition for 
Envelope Contact Points 

We wish to show that if (xo,  yo) occurring at the initial 
point of is an envelope contact point, then &, is not 
minimizing. Having demonstrated the result that Eq. (6a) 
holds at a conjugate point, it is a simple matter using the 
envelope theorem in Eq. (42), to tie our dynamic- 
programming formulation to the standard calculus-of- 
variations proof hinging on the fact that G is not an 
extremizing curve. Since this is so, there exists a curve 
arbitrarily near G that produces a first-order reduction in 
the integral in Eq. (a), and if we were to follow that 
curve from (xo ,  yo) to (F, 5) and then G, from (F, ij) to 
(x,, y2), we would obtain a value V for this path such 
that V < S(xo, yo). As a matter of fact, letting Z be given 
by 

one can easily show that for a curve G’ neighboring G 
by an amount 6y(x) and with Sy(q,) = 6y(E) = 0, the first- 

order change in Z is given by 

(44) 

Since neither f,~,~ nor 4: is zero on G, our contention 
that G is not an extremal is verified. 

We have demonstrated the necessity of the Jacobi 
condition for the case where the conjugate point is an 
envelope contact point occurring at the initial point of 
e,. If (xo,yo) is an interior point of e,, it is clear that the 
above arguments still hold. 

VII. A Global Property of Extremals Near 
an Envelope 

For the case of envelope contact points, it should be 
observed that if the initial point (x, y) of &, is taken 
sufficiently close to (xo, yo), but excluding this point, then 

although a locally minimizing curve, does not provide 
a global minimum between (x,y) and (x2,y2). From 
Sketch 8, we wish to prove that there exists an alternate 
path from (x,, + h, y) to (xzr y2) for h sufficiently small, 
which provides a value V for the integral such that 
V < S(xo 4- h, y). We will choose the alternate path as 
follows: From (x, + h, y) we travel along e,, which 
intersects &, at (x(, + h, y) and has a contact point with 
the envelope G at (x*,y*); then, we travel along a curve 
G’ neighboring G from (x*,y*)  to (x+,y+), and from 
(x+, y+) we travel along the extremal &, to (x2, y,). The 
existence of &, and &, and their intersecting G is guar- 
anteed by the continuity properties of +(x,a) and the 
fact that +“(F((a),  a )  = 0 and +aaa # 0. In fact, if a = a,, 

* 
Sketch 8 
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generates the extrema1 eo, then it follows that 61 is gen- 
erated by a,, + sa, where 6a is given by 

-- "" + O(h2) 
4aa 

(45) 

where the coefficient of h is evaluated at ( ~ 0 ,  yo). Further- 
more, x*, the contact point of &, with G, is given by 

x* = xo + 2h + O(hz) (46) 

The existence of the envelope segment from (x*,y*) to 
(x+,y+) is guaranteed by the assumption that 4aa#0. 

Now S(xo + h, y) is given by 

S(xo + h, y) = S(G yo) - f dx (47) 
EO 

and V is given by 

V =I" f dx +lr f dx + S(x+, y+) (48) 
zo+h 

E1 0' 

With the use of the envelope theorem, subtracting V from 
S(xo + h, y) yields 

S ( X ~  + h, y) - V = [ ~ o z o + h  f d x  - 1:"'" f dx] 
EO 

(49) 

The first two bracketed terms in Eq. (49) can be shown 
from the envelope theorem to be S(xO + h, y) minus the 
value of the integral obtained by following &, from 
(x0 + h, y) to (x2, yz). Since &, has a conjugate point on 
its interior, this difference must be negative. Therefore, 
we must show that the third bracketed term in Eq. (49) 
can be made sufficiently negative to cause the difference 
S(xo + h, y) - V to be positive. It seems clear that this 
can be accomplished. 

To evaluate the negative contribution, we will require 
several expansions. If we let Ay be the difference between 
&, and G, we have 

Expanding Eq. (50) about x,, and a, and using the fact 
that C$~(Z, a(3 )  = 0, we have 

where ( 
difference between &, and G is given by 

)0 denotes evaluation at (xo? yo). Similarly, the 

Since Ay in Eq. (51) varies in a second-order manner with 
(x - xO), it is necessary to expand the difference in inte- 
grals between & and G in Eq. (49) to second-order terms. 
Thus, setting AI, to be the expression 

we have 

A similar expression results for AIz, which is the Wer -  
ence appearing in the second bracketed term in Eq. (49). 
Expanding the coefficients of Ay and Ay' about (xo, yo) and 
using Eq. (44) and (51), we obtain 
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Since AZ, + AI, goes as h3 and since G’ in Eq. (49) is 
arbitrary other than the requirement that it pass through 
(x*, y*) and (x+, y+), we should easily be able to change 
the polarity of Eq. (49). As a matter of fact, the difference 
in integrals along G and G’ appearing in Eq. (49) can be 
written as 

VIII. Examples 

We conclude this Report with two examples illustra- 
ting various facets of the material that has been covered. 

Example A 

Consider the problem 

where 6y is the ordinate of G’ minus the ordinate of G. 
Here, the first variation appearing in Eq. (44) and the 
vanishing of 6y at the end points have been used. If we 
let x+ and 6y be given by 

1 x+ = x* + 4h 

1 (57) 8y = y fY’”‘ a (x - x*) (x - x+) ( :lo 
after some algebraic manipulation it follows that Eq. (56) 
becomes 

Combining Eq. (55) and (58), we see that for the particu- 
lar choice in Eq. (57) for the variation 6y and interval 
(x+  - x*), Eq. (49) becomes 

Hence, for h > 0 and sufficiently small, we have from 
Eq. (59) 

which is the desired inequality. Therefore, for the initial 
point (x, y) of &n sufficiently close to (xu, yo), an enoelope 
contact point, &, is not a globally minimizing curve. 

10 

The extremals for this Sturm-Liouville-type problem (see 
Sketch 9) are 

where a is constant along each extremal, and for a par- 
ticular extremal passing through the point (xl, yl), a is 
given by 

For this example, S(x, y) is 

S(X, y) = - lr y’ cot ?rx (64) 

and 

s,, = - 2 7r cot 7rx (65) 

Hence, (0,O) is a conjugate point for all extremals ema- 
nating from (1,O). 

Sketch 9 
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We note from Eq. (65) that near x = 0 

xs,, = - 2 + O(x2) (66) 

which is in agreement with the asymptotic result in 
Eq. (19). Let us compute the second variation of Eq. (61) 
for the case when xl < 0, using a path construction as 
described in Sketch 4 and in Eq. (35). Here, the quantity 
I(?, 5) becomes 

In Eq. (35) let us set 
(35) becomes 

and e2 = T. For this problem, Eq. 

which is easily shown to be negative for some range of 
positive values of y. Hence, for boundary conditions that 
have ( 0 , O )  as an interior point, &, is not a minimizing 
curve. In fact, for this case, one can find curves that 
make the functional in Eq. (61) arbitrarily negative. For 
the case where x1 = 0, yl = 0, to is an absolutely mini- 
mizing curve, although it can be verified by substituting 
Eq. (62) into Eq. (61) that E, is not unique. 

Example B 

Consider the problem 

where x(sP)  = y ( T p )  = 1. The extremal solutions for this 
problem satisfying the boundary condition are of two 

types: 

Y = (e)2 + (7) 1 - x  

The straight-line segment solution in Sketch 10 

(70b) 

Y 

Sketch 10 

For (x ,  y) lying in region I, the parabola lying totally 
within I is a globally minimizing path. For (x, y) in I1 or 
I11 the straight-line segment solution is the better curve; 
for (x, y) in I11 there exists no parabolic solution, since 
the curve G is an envelope to this one-parameter family. 
From Eq. (70) we see, by setting ay/i3a = 0 at a point of 
contact ( X , i j )  of a parabolic extremal with G, that G 
satisfies the relation 

(71) 
- 1  y = -j- (1 - X)' 

It is clear from (70a) that through any point in I or I1 
( x  < 1) there pass two extremals generated by two values 
of a except for (x, y) lying on G where the two extremals 
collapse to one. We choose the extremal with no contact 
point on G in its interior, and for this case it can be 
shown that 

1 3 / ?  1 c - 
I: q{[y + 1 -I- d ( x  - 1)' + (y - l)'] 3'2 - L y  + 1 - i ( x  - 1)' + (y - '"1 ) 

(72) 
2 I1 and 111: - (1 + y3/') 
3 

S(x,y) = 

On the boundary curve F in Sketch 10 the two forms in Eq. (72) have the same value. In Eq. (72), S(x, y) is strictly 
the optimal performance function. We observe that S, and S, are continuous along extremals, but that they are 
discontinuous across the boundary curve F.  It can also be shown that the second partials of the expression for region I 
in Eq. (72) become infinite when the parabolic extremal touches the envelope. 
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IX. Summary 
In the foregoing we have worked with the simplest 

problem in the calculus of variations in developing the 
conjugate-point necessary conditions from a dynamic- 
programming point of view. Several obvious generaliza- 
tions should be noted. These results can be extended to 
the case where y ( x )  is an n-dimensional vector. An en- 
velope conjugate point then becomes a contact point with 
a generally (n - 1)-dimensional envelope surface. The 
envelope theorem still applies for a one-parameter family 
of extremals whose contact points trace out a curve con- 
tained in the envelope surface. This approach is also 
applicable when the fixed end-point condition is relaxed 
so that the terminal point lies on a specified manifold. 

The necessity of the Jacobi condition for the optimal- 
control problem couched in a dynamic-programming 

. 

formulation (see Ref. 1, Chap. 4) can also be demon- 
strated, following proofs analogous to those given here. 
Basically, near a conjugate point one studies the asymp- 
totic properties of the matrix S,, which satisfies a certain 
matrix Ricatti equation analogous to Eq. (17) and which 
is well known in optimal-control and estimation theory. 

Finally, the result obtained in Section VI1 concerning 
the nonoptimality in a global sense of a relatively mini- 
mizing extrema1 whose end point is too near an envelope 
is of some consequence. It has obvious practical implica- 
tions, particularly for practitioners of the numerical art 
of generating optimal or even suboptimal (but more prac- 
tical) paths. It suggests that in certain cases of an end 
point near an envelope, a fundamentally different path 
may exist that could produce a substantial reduction in 
the performance function. This is, of course, implicit in 
the example presented in Sketch 10. 
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